Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Environ Res Public Health ; 20(3)2023 01 18.
Article in English | MEDLINE | ID: covidwho-2244243

ABSTRACT

This study describes the chemical and toxicological characteristics of fine particulate matter (PM2.5) in the Po Valley, one of the largest and most polluted areas in Europe. The investigated samples were collected in the metropolitan area of Milan during the epidemic lockdown and their toxicity was evaluated by the oxidative potential (OP), measured using ascorbic acid (OPAA) and dithiothreitol (OPDTT) acellular assays. The study was also extended to PM2.5 samples collected at different sites in the Po Valley in 2019, to represent the baseline conditions in the area. Univariate correlations were applied to the whole dataset to link the OP responses with the concentrations of the major chemical markers of vehicular and biomass burning emissions. Of the two assays, OPAA was found mainly sensitive towards transition metals released from vehicular traffic, while OPDTT towards the PM carbonaceous components. The impact of the controlling lockdown restrictions on PM2.5 oxidative properties was estimated by comparing the OP values in corresponding time spans in 2020 and 2019. We found that during the full lockdown the OPAA values decreased to 80-86% with respect to the OP data in other urban sites in the area, while the OPDTT values remained nearly constant.


Subject(s)
Air Pollutants , COVID-19 , Humans , Air Pollutants/analysis , Seasons , Environmental Monitoring/methods , COVID-19/epidemiology , Communicable Disease Control , Particulate Matter/analysis , Italy/epidemiology , Oxidative Stress
2.
Toxics ; 10(6)2022 May 25.
Article in English | MEDLINE | ID: covidwho-1903445

ABSTRACT

This work evaluates the aerosol oxidative potential (OP) and its changes from modified air pollution emissions during the COVID-19 lockdown period in 2020, with the intent of elucidating the contribution of aerosol sources and related components to aerosol OP. For this, daily particulate matter (PM) samples at an urban background site were collected and analyzed with a chemical (acellular) assay based on Dithiothreitol (DTT) during the COVID-19 restriction period in Athens (Greece). The obtained time-series of OP, PM2.5, organic matter (OM) and SO42- of the pre-, post- and lockdown periods were also compared to the data of the same time periods during the years 2017-2019. Even though all traffic-related emissions have been significantly reduced during the lockdown period (by 30%), there is no reduction in water-soluble OP, organics and sulfate concentrations of aerosol during 2020. The results reveal that the decrease in traffic was not sufficient to drive any measurable change on OP, suggesting that other sources-such as biomass burning and secondary aerosol from long-range transport, which remained unchanged during the COVID lockdown-are the main contributors to OP in Athens, Greece.

3.
Sci Total Environ ; 841: 156676, 2022 Oct 01.
Article in English | MEDLINE | ID: covidwho-1886074

ABSTRACT

Historically, the atmospheric particles constitute the most primitive and recent class of air pollutants. The science of atmospheric particles erupted more than a century ago covering more than four decades of size, with past few years experiencing major advancements on both theoretic and data-based observational grounds. More recently, the plausible recognition between particulate matter (PM) and the diffusion of the COVID-19 pandemic has led to the accretion of interest in particle science. With motivation from diverse particle research interests, this paper is an 'old engineer's survey' beginning with the evolution of atmospheric particles and identifies along the way many of the global instances signaling the 'size concept' of PM. A theme that runs through the narrative is a 'previously known' generational evolution of particle science to the 'newly procured' portfolio of knowledge, with important gains on the application of unmet concepts and future approaches to PM exposure and epidemiological research.


Subject(s)
Air Pollutants , COVID-19 , Air Pollutants/analysis , Humans , Pandemics , Particle Size , Particulate Matter/analysis
4.
Environ Res ; 206: 112597, 2022 04 15.
Article in English | MEDLINE | ID: covidwho-1587835

ABSTRACT

To prevent the transmission of the novel coronavirus disease 2019 (COVID-19), China adopted nationwide lockdown measures on January 25, 2020, leading to an evident diminution in the observed air pollutants. To investigate the influence of the lockdown on atmospheric chemistry, the specific molecular composition, oxidative potential of organic aerosols (OAs) in PM2.5 were studied using a high-resolution orbitrap mass spectrometry at a typical coal-combustion city, Linfen, in the North China Plain (NCP). The major air pollutants including PM2.5, PM10, SO2, NO2, and CO were observed to be diminished by 28.6-45.4%, while O3 was augmented by 52.5% during the lockdown compared to those before the lockdown. A significant decrease of oxygen-containing (CHO) compounds (24.7%) associated with anthropogenic acids was observed during the lockdown, implying a reduction in fossil fuel combustion. The coal-burning related sulfur-containing organosulfates (CHOS-) and nitrooxy-sulfates (CHONS-) have also shown attenuated in both their relative abundances and anthropogenic/biogenic ratios. Amine/amide-like CHON + components have decreased by 27.6%, while nitro/nitrooxy-containing CHON- compounds have only decreased by 7.1%. Multi-source nitrogen-containing (CHN) compounds have shown a moderate elimination of 24.0%, while the identified high-condensed azaarenes have fallen from 17.7% to 14.7%, implying a potential reduction in the health risk of OAs during quarantine. The measurement of OAs' oxidative potential through dithiothreitol (DTT) assay has confirmed that as it had dropped from 0.88 nmol min-1 m-3 to 0.80 nmol min-1 m-3. High correlations were observed between the abundance of OA subgroups with the concentration of PM2.5 after the execution of the lockdown, suggesting a potential elevation in the contribution of organic components to the total PM2.5 level. Our study provides insightful compositional and health-related information in the variation of OAs during the lockdown period and attests to the validity of joint-control strategy in controlling the level and health risks of numerous atmospheric pollutants.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , China , Communicable Disease Control , Environmental Monitoring , Humans , Oxidative Stress , Particulate Matter/analysis , SARS-CoV-2
5.
Sci Total Environ ; 758: 143582, 2021 Mar 01.
Article in English | MEDLINE | ID: covidwho-922131

ABSTRACT

The goal of this study was to characterize changes in components and toxicological properties of PM2.5 during the nationwide 2019-Coronavirus (COVID-19) lockdown restrictions in Milan, Italy. Time-integrated PM2.5 filters were collected at a residential site in Milan metropolitan area from April 11th to June 3rd at 2020, encompassing full-lockdown (FL), the followed partial-lockdown (PL2), and full-relaxation (FR) periods of COVID-19 restrictions. The collected filters were analyzed for elemental and organic carbon (EC/OC), water-soluble organic carbon (WSOC), individual organic species (e.g., polycyclic aromatic hydrocarbons (PAHs), and levoglucosan), and metals. According to online data, nitrogen dioxide (NO2) and benzene (C6H6) levels significantly decreased during the entire COVID-19 period compared to the same time span in 2019, mainly due to the government-backed shutdowns and curtailed road traffic. Similarly, with a few exceptions, surrogates of tailpipe emissions (e.g., traffic-associated PAHs) as well as re-suspended road dust (e.g., Fe, Mn, Cu, Cr, and Ti) were relatively lower during FL and PL2 periods in comparison with year 2019, whereas an increasing trend in mass concentration of mentioned species was observed from FL to PL2 and FR phases due to the gradual lifting of lockdown restrictions. In contrast, comparable concentrations of ambient PM2.5 and black carbon (BC) between lockdown period and the same time span in 2019 were attributed to the interplay between decreased road traffic and elevated domestic biomass burning as a result of adopted stay-home strategies. Finally, the curtailed road traffic during FL and PL2 periods led to ~25% drop in the PM2.5 oxidative potential (measured via 2',7'-dichlorodihydrofluorescein (DCFH) and dithiothreitol (DTT) assays) with respect to the FR period as well as the same time span in 2019. The results of this study provide insights into the changes in components and oxidative potential of PM2.5 in the absence of road traffic during COVID-19 restrictions.


Subject(s)
Air Pollutants , COVID-19 , Coronavirus , Air Pollutants/analysis , Communicable Disease Control , Environmental Monitoring , Humans , Italy , Pandemics , Particulate Matter/analysis , Policy , SARS-CoV-2 , Vehicle Emissions/analysis
SELECTION OF CITATIONS
SEARCH DETAIL